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Abstract. The hopping rate Y of heavy, positively charged partides (e.g. positive 
muons) in a typ-I superlattice is calculated. The electron-electron and electron- 
charged-partide interactions are treated in the random-phase approximation. It is 
assumed that the charged particle is confined to the banier regions between the 
quantum weUs w h m  there M no electrons, and hop between nearest-neighbour 
lattice sites R I ,  Rz only. It is shown that Y is an anisotropic function of RI and 
Rz. The contribution to Y due to particlehole mode and plasmon excitations is 
obtained. 

1. Introduction 

The presence of electrically charged defects in solids (e.g. muons or protons in metals 
or semiconductors) presents an interesting problem in condensed matter physics [I-51. 
Whenever these charged particles hop from one lattice site to another they may excite 
either electronic excitations or phonons. For example, a slowly moving heavy charged 
particle within a degenerate Fermi gas can excite electron-hole pairs with small ex- 
citation energy. In this case, electrons of low energy may not be able to rearrange 
their wavefunctions to be centred around the new lattice site to which the charged 
particle hops. As a consequence, the hopping bandwidth can be reduced. This result, 
referred to as the ‘Anderson, orthogonality catastrophe’ [6], is produced when a large 
number of electron-hole pairs of low excitation energy must be accounted for within 
the structure of the many-particle wavefunction for the basis of electronic eigenstates. 
By assuming a screened-electron-charged-particle interaction V,, a constant density 
of states p for conduction electrons, Kondo has shown that the hopping rate for met- 
als is proportional to TZK-I, where K E V t p 2 [ 1  - s in*(k ,~) / (k~a)~] .  Here, 0 is the 
nearestneighbour hopping distance and k, is the Fermi wavenumber. This power law 
can be understood as follows: the factor of TZK is due to electronic screening whereas 
T-’ is due to level broadening proportional to T .  Kadono et ~l [7,8] were the first to 
observe this power law behaviour for Cu. 

In recent work [9], we have shown that the reduction of the hopping bandwidth is 
due not only to electron wavefunction overlap but to all possible virtual excitations as 
well. As a matter of fact, by treating the dynamically screened fields due to electron- 
electron interaction self-consistently, we have demonstrated that plasmon excitations 
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may contribute a normalization factor as large as one or two orders of magnitude in 
bulk materials. 

Whereas the motion of heavy charged particles in bulk materials has been exten- 
sively studied both theoretically and experimentally, very little attention has been 
given to their effects on the dynamical properties of lower-dimensional structures. To 
the best of our knowledge, no work has been carried out on this subject. It is the 
purpose of this paper to analyse the bopping rate of heavy charged particles when the 
dimensionality of their environment (represented by the conduction electrons here) 
is reduced. We show that the TZx-' power law behaviour of the hopping rate will 
be changed as a result of the distinctive collective nature of the plasmon excitations 
in the long-wavelength limit. It is well known that the frequency of the collective 
excitation of a type1 superlattice tends to zero as the in-plane wavenumber decreases, 
unlike the bulk thr-dimensional system. The motion of a heavy charged particle in 
superlattices will not only provide us with information about the nature of the particle 
but will help us understand the electronic and transport properties of the conduction 
electrons. 

The system used in our study to  represent the low-dimensional environment is a 
superlattice structure consisting of a periodic arrangement of two-dimensional (2D) 
electron gases. Such an arrangement is an appropriate model for layered semicon- 
ducting superlattices such as GaAs/AI,Ga,-,As intentionally doped with Si donors 
during the molecular beam epitaxy (MBE) growth of the AI,Ga,-,As layers [lo]. In 
our calculations, we assume that electrons are located only on the zD planes and the 
charged particle is confined to the region between these planes. In this way, we are 
able to  study the interaction between a ZD gas and a point defect. This interaction, to- 
gether with the screening properties of the electrons, essentially control the motion of 
the particle in these structures. We shall calculate the hopping rate of charged parti- 
cles in superlattices by treating the particleelectron interaction and electron-electron 
interaction self-consistently. Our result for the hopping rate v shows two new features: 
firstly, due to the wavenumber dependence of the collective excitation, the tempera- 
ture dependence of U is no longer simply a power law. Secondly, due to the anisotropic 
nature of the system, v is an anisotropic function of the lattice site vcctors R, and 
&, depending on the difference RII = RIII - &,, but on zI and z2 separately, where 
the superlattice growth direction is along the z axis. (Here, we write R = (RII,z)). 
The reason for this is that, the interaction strength being site-dependent, the charged 
particle hops to a neighbouring lattice site where the electron-particle interaction is 
lower. 

An outline of the remainder of this paper is as follows. In section 2, we derive the 
site-dependent hopping rate v for a charged particle in a superlattice. The contribution 
to v due to particlehole modes is derived in section 3. In section 4, the plasmon 
contribution is obtained. Section 5 contains explicit results for the hopping rate in a 
superlattice in the limit when the period d of the superlattice is short. Section 6 i s  
devoted to concluding remarks and discussion of our numerical results. 

2. General formulation of the problem 

The problem of calculating the hopping rate of a pmitively charged particle in a super- 
lattice is relevant for an understanding of the transport properties of microstructures. 
The transition probability per unit time for a particle in eigenstate [ i )  hopping from 
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lattice site 1 to lattice site 2 in eigenstate I f )  within a solid is, to lowest order in the 
transfer integral A, given by [ll] 

where the average is carried out over all possible initial states. This definition for Y 
wumes that the energy levels for a particle at lattice sites 1 and '2 are virtually the 
same, i.e. we ignore the energy difference A E  between corresponding energy levels at 
the two lattice sites. This is justified as long as T > AE. The case A E  > T can be 
obtained in a straightforward way. 

The toial Hamiltonian for a particle of positive charge Ze hopping between nearest- 
neighbour lattice sites within the barrier of a superlattice of period d is 

H = HT + He! + Hint (1) 

where 

HT = A(cfc2 +tic,) P a )  

is the transfer Hamiltonian with ci and c, the creation and destruction operator for 
a charged particle at lattice site 8 ,  

= ~ ' k a : , l a L , I  + U~" ' - ' ' ~da!+q , lu~ ' -~ , l~ak ' , I ' ak , l  (26) 
k.1 k,I k'J' P 

H~~~ = z Uqe-d'd-4eiq.Rii aW t a k - q, I ,  (24  
k d  

Here, A is'the tunnelling matrix for electrons hopping between nearest-neighbour lat- 
tice sites. aL,fak,l are creation and destruction operators for an electron with wavevec- 
tor k at lattice site I. k, q, RI, are in the zy plane perpendicular to the direction of 
growth (the z axis) of the superlattice, uq 2 i r e 2 / ~ , q  is the tw*dimensional Fourier 
transform of the Coulomb interaction, (with q = 1q1); cm is the high-frequency back- 
ground dielectric constant, I, I' = -m, . . . ,-l,O, 1,. . . , w  label the zD layers of the 
superlattice. 

= (RII, z2) 
is 

The hopping rate for electrons between lattice sites RI = (0, zl) and 

CO 

Y =  A2 / dt $(t) 
J-m 

where 

I t  t l  
$ ( t )  = e-F(t) F(t) / dt, / dt, (Y ( t , )  Vt(tz)) 

0 0 

with 

(3) 

(4) 
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where I/@ is the thermal energy kBT and I I (q ,w)  is the proper polarization. The 
frequency w has a small positive imaginary part and the sum over kz is to be carried 
out from -r/d to r /d .  In the random-phase approximation, we have 

where the singleparticle density-density response function is 

Ik = {expp(ck - EF)] + l}-’ is the Fermi-Dnac function, with EF equal to the Fermi 
energy and zk equal to the single-particle electron energy. We also have introduced 
the dielectric function defined by 

S q , k s h )  = 1 - V,Sq ( k , ) n o ( P , w )  

where the geometric structure factor 

sinh(qd) 
s q ( k z ) ~  cosh(pd) -cm(k,d)’ 

Combining these results, (7) becomes 
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Substituting (13) into (4) for F ( t )  and carrying out the integrals over t ,  and t,, our 
calculation shows that the term linear in t cancels the first-order term (V( t ) )  and we 
obtain 

where 

where 

sinh [q (d - z)] + eikSd sinh (qz) 
Gq,k. (.) cosh(@) - cos(k ,d)  

Noting that the imaginary part (S(z) )  of the inverse dielectric function is given by 
(rrZ(z) denotes the real part) 

we separate the contributions to F ( t )  due to plasmons (pl) and particlehole modes 
(ph). We write F ( t )  = Fph(t) + F,,(t) where 

(176) 
At T = 0, the real and imaginary parts of the single-particle polarization function are 

s [n"q,w,] = -- 2rrlizi {b-  ( 4 2 ] 1 1 2 4 ( 1 - ( c - ; ) 2 )  

- [1- (f+;)2]1'2vt(l- ( i + $ ) ) }  
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where q+(z) is the Heaviside unit step function, a E q/2kF and Sl E hw/E,;  k, is the 
Fermi wavenumber. 

In the low-frequency (0 Q: 1) and long-wavelength ( d  < 1) limits, we obtain 

where the plasma frequency is given by 

Here, n, is the electron density per unit area, with k, = (Zm,)”’. We use these 
results to calculate ( a )  the particlehole and ( 6 )  the plasmon contributions to the 
transition probability. 

3. Particle-hole contribution 

Assuming that the dielectric screening is static, we obtain, making use of (196) in 
(17a) and carrying out the frequency integration (see appendix A) 

where e, is a cutoff frequency which determines the range of validity of the low- 
frequency approximation in (l9b) for 3 I lo(q ,w)  - w .  Here, we have integrated over 
the angle 6 between the wavevector q and the relative position vector rill, separating 
nearest neighbours, in the zy plane: 

2r 

A(n, I C , ,  RI!; zt, 22) 1 de A ( q ,  k,, RI,;  z l lz2)  
0 

= 2n{\G,,xx (~1)r + IG,.t. (41’- 2Jo (d$) P [Gf.tL (z1)Gq,&. ( z2 ) I I  

(22) 

where Jo(z) is a Bessel function of the first kind. Referring to (18b), we find that, if 
we assume that Sl g 1,  we must have 1 - > U / 2  for S IIo # 0. Thus, we choose 
E ,  = 2 (1 - p) > 0. In the limit of large It[, we obtain 
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where wF e EF/h. Therefore, 

ZK 
e-Fdl) (y) e-ZrksTKltl/he-Be-irK s g n ( t )  

where 

is independent of the choice for &. Also, B is given by 

1435 

(24) 

showing that bo26 I< and B depend on z1 and z2 separately. Unlike K ,  we find that 
E depends on E 

q :  The formulation is amenable to further analysis in the close-packed limit (d + 0). 
In this limit t, we obtain in a straightforward way after replacing 1 - cos(k,d) by the 
parabolic approximation (k ,d) ' /Z 

and 

where, in this notation, a,, E fr2c,/me2 is the effective Bohr radius, where m is the 
effective band mass for an electron, and rs E (nn,)-'/2/ao is a measure of the electron 
density per unit area, n r .  Making use of these results in (25), it can be shown after 
some algebra that for d -t 0 

x {cosh2(&) +cosh2(@E2) -2J , , (gf i )  cosh(rjEl)cosh(qE2)} (29) 

t The k, variable would be integrated oyer the interval - r / d  < k, < r / d .  Changing the variable 
of integration to k = k.d, one has, for example, a factor cosh(pd) - cask in the denominator of the 
geometric structure factors S, (k,) and Gq,k,. By approximating the hyperbolic cosine function by 
1 t (qd)2/2, in the limit as d -+ 0, one finds that the dominant contributions to the integrals come 
from the vicinity of k = 0. Therefore, from this point of view the COS function could be approximated 
by its first two terms only. 



- : (;) lo 
Here i 2kFz, R 2kFRll,  and 

( 3 0 4  

(30b) 11.2 a 2kFdf b E 2r,d (k;a,f) . 

For a fixed nearestneighbour hopping length R,, our calculations show that K is 
fairly sensitive to the direction of motion of the particle as well as zl and z 2 .  The 
polar angle 0 is chosen in such a way that RI, = Rosin@ and z2 = z1 + RocosO. 
In these calculations, we retained the cosine trigonometric function in the structure 
factors. However, the same conclusions for the spatial dependence of the function I< 
are obtained for the parabolic approximation. 

0’025 7 
0.020 

s 0.015 
0.010 

0.005 
0.0 0.4 0.8 1.2 

e 
6 

Figure 1. Plot of K/v;  given by (25), in the static approximation, 84 a fundion of 
B = tan-l[Rll/(zz - = I ) ]  for two different values of 11, The particle is chosen to be 
singly charged with Z = 1. The other parameters are: d = 100 A ,  €& = 4 A. 

In figure 1, K is plotted as a function of 0 for fixed z1 and R,. The following 
parameters have been used in our numerical calculations, m = O.O67m,, where mo is 
the free electron mass and E -  = 10.94. For these values of m and em, a. FJ 86 A, a 
value of r, FJ 1 corresponds to an areal density of - 10l2 cm-2 which is typical for this 
material. Our results show that the particle motion parallel to the ZD plane is more 
favoured if the nearest-neighbour lattice sites along different direction are originally 
equivalent in the host material. This can also be understood from another point of 
view: when the particle hops from one lattice site to a neighbouring one, it is easier 
to rearrange the electronic wave function if the particle hops within a plane. The 
decrease of I< when z1 increases is a direct consequence of a reduction in the coupling 
strength between the particle and the electrons located in an adjacent plane. 
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4. Plasmon contribution 

We now turn to a calculation of the long-wavelength plasmon contribution t o  the 
hopping rate. Substituting (190) into (17b), we obtain in a straightforward way 

b 

In the close-packed limil (d + 0), we make use of (27) and obtain 

Here, q, is a cut-off wavenumber which has been introduced to ensure the convergence 
of the q integral and 
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In figure 2, the real and imaginary parts of Fpl are plotted as functions of 8 for fixed 
z ,  and %. In these calculations, we chose the electron effective mass m = 0.067m0 
(mo is the free electron mass) and c, = 10.94. The lattice period d = 100 .&and the 
areal density nr = 10" cm-' so that hw; = 474.05 meV. We chose the temperature 
as T = 170 K and the cutoff wavenumber q, = 00' - k,. The real part of Fpl(t) 
is, of course, temperature independent. As one can see, the real part of FpI which 
determines the renormalization of the hopping bandwidth is strongly angle dependent. 
It is easier to excite collective excitations in such structures when the motion of the 
particle is along the superlattice axis. The imaginary part has a relatively weak 
angular dependence. The temperature dependence of FpI is weaker compared to that 
of Fph. 

In the limit when the zD planes are spread out (d -+ m), it can be shown in a 
straightforward way that 

x { I  - cos(wi"(q)t) + i s i n ( ~ ~ ~ ( q ) t ) [ Z n ~ ( w ~ ~ ( q ) )  +I ]}  (34) 

where w i D ( q )  in (34) is the 2D plasmon frequency given by (20) with S, (k,) replaced 
by unity and nB (U) is the Bose distribution function defined by nB(w) = l/(ePnw - 1). 
Clearly, F J t )  is independent of z ,  and z2 and only the imaginary part is temperature 
dependent. The dependence of 8 Fpl on temperature is appreciable in the 2D limit. 
We now make use of these results to calculate the hopping rate for a charged particle 
in a superlattice. 

5. Hopping rate for a superlattice 

We now apply (3) to calculate the hopping rate which, in general, is given by 

m 
= 1, dt e-FPb(t)e-FpI('), 

Making use of (24) and (31) in (35), we obtain 

(35) 

where F,,(t) = F:, + F' ( t )  is the sum of a time-independent part F:l and a time- 
dependent part Fil(l(t), with p! 
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and 

1439 

(38) 

Since the energy of the plasmon excitation is wavenumber dependent the plasmon 
contribution to  the hopping rate, in general, depends on temperature. 

- 7.0 

- 
? 

6.0 

c 

5.5 
\ 
\ 

\ 
\ 
\ 

5.0 -3.0 -2.5 -2.0 -1.5 - 
In(T/E,) 

0 

Figure 3. Plot of the hopping rate of a charged particle (2 = 1) in a superlattice, 
The parameters used here are the same as those used for the upper curw of figure 1 
with 0 = 0.4. The full circles are the calculated values. The broken line is a guide for 
viewing. The full line is the power law behaviour which is presented far comparison. 

As an example, we have calculated the temperature-dependent hopping rate for 
the same sample parameters used in figure 1. The hopping direction is chosen as 
0 = 0.4 and z1 = 20 A. Our calculations show that except. for very low temperature 
(note EF = 400 E(), the hopping rate deviates from the power behaviour due to the 
inclusion of low-energy collective excitations. We should note that this temperature 
dependence may be further altered if the dynamical screening is taken into account. 

6. Concluding remarks 

The basic physical quantity that we are concerned with in this paper is the hopping 
rate Y for a charged particle in the barrier region of a superlattice. Our results show 
that the hopping rate Y is a function of zI and z2 separately, which are the z coordi- 
nates of the lattice sites between which the charged particle hops but v depends on 
the difference RII for the lattice translation vector perpendicular to the axis of the 
superlattice. In general, the temperature dependence of Y for layered materials is not 
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of the form pK-' which is the behaviour for bulk three-dimensional systems. This 
difference is due to the fact that the collective normal modes for quasi-2D samples are 
wavenumber dependent in the long-wavelength limit. 

We believe that the results presented here could be verified experimentally with the 
use of muons or protons. We suggest that muon spin-relaxation experiments be carried 
out in layered materials. By observing the decay of the muon spin, the hopping rate 
of muons can be deduced. When muons are separated from the metallic/conducting 
electron plane, the effective muon-electron interaction is reduced. Therefore we expect 
that a fast spin relaxation will be observed. On the other hand, one can use the muon 
as a local probe to study the properties of the structure. From measured hopping 
rates, one can deduce the value of the effective mass of electrons which is usually 
determined through optical and transport experiments. 

In conclusion, we have presented a study of the motion of charged particles in 
a superlattice. A quite different temperature dependence of U is predicted. The 
relevance to experiment has been discussed. 
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Appendix A. Notes on a frequency integral 

In this appendix, we evaluate the integral 

where 

It I' + I" 

where 
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Expanding the integrand in (A4) in a Taylor series, we obtain 

where the approximation is valid in the limit of large 1. 
We now turn our attention to the evaluation of the remaining integrals given by 

Replacing the upper limit of integration in (A7) by infinity (since the integrand quickly 
approaches zero at high frequency) and expanding the integrand, we obtain 

where 7 I k,Tt/h. The integral over I in (A8) can be calculated by expanding 
l/(e" - 1) in powers of e-' < 1. Calculation shows that 

Our evaluation of I"+ I, is completed by observing that (A9) can be rewritten as 

where the infinite product has been evaluated using 1.431#2 of Gradshteyn and Ryshik 
[la]. Combining (A6) and (AlO), we obtain ( T I  kBTt/h) 

sinh (rrkBTt/h) d-1 1 + D2t2 + itan-' (Dt) [ x k B T t / h  I = I' + 1'' + 1, = In 
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